On the modular curves YE(7)

نویسندگان

  • Emmanuel Halberstadt
  • Alain Kraus
چکیده

Let E denote an elliptic curve over Q and Y E (7) the modular curve classifying the elliptic curves E over Q such that the representations of Gal(Q/Q) in the 7-torsion points of E and of E are symplectically isomorphic. In case E is given by a Weierstraß equation such that the c 4 invariant is a square, we exhibit here nontrivial points of Y E (7)(Q). From this we deduce an infinite family of curves E for which Y E (7)(Q) has at least four nontrivial points.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ELLIPTIC CURVES AND MODULAR FORMS Contents

1. January 21, 2010 2 1.1. Why define a curve to be f rather than V (f) ⊂ P(k)? 3 1.2. Cubic plane curves 3 2. January 26, 2010 4 2.1. A little bit about smoothness 4 2.2. Weierstrass form 5 3. January 28, 2010 6 3.1. An algebro-geometric description of the group law in terms of divisors 6 3.2. Why are the two group laws the same? 7 4. February 2, 2010 7 4.1. Overview 7 4.2. Uniqueness of Weier...

متن کامل

On a unit group generated by special values of Siegel modular functions

There has been important progress in constructing units and Sunits associated to curves of genus 2 or 3. These approaches are based mainly on the consideration of properties of Jacobian varieties associated to hyperelliptic curves of genus 2 or 3. In this paper, we construct a unit group of the ray class field k6 of Q(exp(2πi/5)) modulo 6 with full rank by special values of Siegel modular funct...

متن کامل

ASPECTS OF COMPLEX MULTIPLICATION Contents

1. Preview 2 Complex multiplication on elliptic curves over C 2 Traces of singular moduli 3 Class field theory 3 The Kronecker limit formula and Kronecker’s solution of Pell’s equation 4 Application to Diophantine equations (Villegas) 4 L-series and CM modular forms 5 Other topics 6 2. Complex Multiplication on Elliptic Curves over C 6 Elliptic Curves over C 6 Elliptic functions 7 Complex multi...

متن کامل

Periods and Special Values of L-functions

Introduction 1 1. Modular forms, congruences and the adjoint L-function 2 2. Quaternion algebras and the Jacquet-Langlands correspondence 6 3. Integral period relations for quaternion algebras over Q 8 4. The theta correspondence 12 5. Arithmetic of the Shimizu lift and Waldspurger’s formula 16 6. Hilbert modular forms, Shimura’s conjecture and a refined version 19 7. Unitary groups and Harris’...

متن کامل

18.783 Elliptic Curves Spring 2013 Lecture #24 05/09/2013

Andrew V. Sutherland In this lecture we give a brief overview of modular forms, focusing on their relationship to elliptic curves. This connection is crucial to Wiles’ proof of Fermat’s Last Theorem [7]; the crux of his proof is that every semistable elliptic curve over Q is modular.1 In order to explain what this means, we need to delve briefly into the theory of modular forms. Our goal in doi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 69  شماره 

صفحات  -

تاریخ انتشار 2000